Powder Diffraction Studies of SrNb₂O₆ and SrNb₆O₁₆

Bengt-Olov Marinder, Pei-Ling Wang* and Per-Erik Werner

Department of Physical, Inorganic and Structural Chemistry, Arrhenius Laboratory, University of Stockholm, S-10691 Stockholm, Sweden

Marinder, B.-O., Wang, P.-L. and Werner, P.-E., 1986. Powder Diffraction Studies of SrNb₂O₆ and SrNb₆O₁₆. – Acta Chem. Scand. A 40: 467-475.

The crystal structure of the monoclinic modification of $SrNb_2O_6$ was studied with Guinier-Hägg X-ray powder diffraction data. The cell dimensions are a=7.7223(7) Å, b=5.5944(5) Å, c=10.9862(7) Å and $\beta=90.372(5)^\circ$. The space group is $P2_1/c$. The structure was refined by the Rietveld full-profile technique. A comparison was made with the isostructural orthorhombic $CaTa_2O_6$. An orthorhombic strontium/niobium oxide with unit cell dimensions a=3.9563(3) Å, b=10.1889(8) Å and c=14.794(1) Å was studied with Guinier-Hägg data from a mixed pattern. It is shown that the compound is isostructural with NaNb $_6O_{15}$ F and has the composition $SrNb_6O_{16}$.

The binary oxide system SrO-Nb₂O₅ contains a large number of phases that can be denoted by the general formula XSrO · YNb₂O₅. Goldschmidt¹ detected, by means of powder patterns, four phases of approximate compositions (X/ $Y = (1/1), (2/3), (1/3) \text{ and } (1/12). \text{ Francombe}^2$ reported a phase of composition (2/5); Whiston and Smith³ a phase (3/5). Appendino and Burlando4 determined unit cell dimensions for the phases (6/1), (5/2) and (2/1). Furthermore, Appendino and Montorsi⁵ reported a powder diffraction pattern from a phase for which they proposed the composition (3/8). The published pattern was not indexed, but we were able to index it by an orthorhombic unit cell a = 3.962 Å, b = 10.177 Å and c = 14.760 Å with a De Wolfffigure of merit $M_{20} = 20$; furthermore, the published patten showed strong similarities with that of NaNb₆O₁₅F.⁷ This indicated not only that the composition of the phase is (1/3), but also that it is isostructural with NaNb₆O₁₅F. It should be noted that the phase (1/3) reported by Goldschmidt¹ is of the tetragonal bronze type. Therefore, we decided to synthesize the orthorhombic phase and check the structural hypothesis by a Rietveld profile analysis of an X-ray Guinier

powder pattern. As discussed below, however, we were only able to prepare a two-phase sample of the orthorhombic phase and a monoclinic modification of SrNb₂O₆. In order to facilitate the study of the two-phase sample, the monoclinic SrNb₂O₆ phase was first investigated separately.

Two modifications of SrNb₂O₆ and the conditions of reversible transformation of the two phases into one another have been described by Brusset *et al.*⁸ A tetragonal high-temperature modification having the potassium tungsten

Table 1. Crystal data.

Stoichiometry	SrNb ₂ O ₆	SrNb ₆ O ₁₆
Space group	P2 ₁ /C	Pmm2
Z	4	2
F.W.	369.4	901.06
a/Å	7.7223(7)	3.9563(3)
<i>b</i> /Å	5.5944(5)	10.1889(8)
c/Å	10.9862(7)	14.794(1)
β/°	90.372(5)	
V/ų	474.6	596.4
d-calc/g cm ⁻³	5.17	5.02
Cell figures of m	nerit:	
M ₂₀	29	33
F ₇₇	34 (0.010, 233)	_
F ₈₂	- '	38 (0.010, 216)

^{*}On leave from Shanghai Institute of Ceramics, Academia Sinica, 865 Chang-Ning Rd., Shanghai 200050, China.

MARINDER, WANG AND WERNER

Table 2. X-ray powder diffraction pattern of monoclinic SrNb₂O₆.

(hkl)	2θ-obs	2θ-calc	Δ(2θ)	d-obs	<i>I</i> -obs	(hkl)	2θ-obs	2θ-calc	Δ(2θ)	d-obs	<i>l</i> -obs
(002)	16.141	16.123	0.018	5.487	81	(<u>2</u> 24)	52.193	52.204	-0.011	1.7511	105
(011)	17.794	17.777	0.017	4.981	451	(224)			-0.011	1.7446	61
(110)	19.589	19.579	0.010	4.528	86	(412)		52.924	0.031		•
(102)	19.793	19.758	0.035	4.482	87	(025)	52 055	52.950	0.005	1.7277	7
			0.033		45	(132)		53.139	0.005	1.7220	6
(102)	19.911	19.880		4.456	45		55.144			1.7220	О
(111)		21.167	0.034			(132)		53.191	-0.053		
(111)		21.225	-0.024	4.187	149	(033)	55.239		0.007	1.6616	168
(012)	22.667	22.668	-0.001	3.9197	89	[(231)		55.273	-0.034		
(200)	23.030	23.016	0.014	3.8587	558	(206)	55.642	55.650	-0.018	1.6505	18
$(\bar{2}02)$	28.169	28.141	0.023	3.1654	218	(413)	56.415	56.428	-0.013	1.6297	117
(202)	28.331	28.317	0.014	3.1476	747	(Ž32)	57.297	57.280	0.017	1.6067	73
(013)		29.122	-0.004	3.0643	4557	(315)			-0.027		
(Ž11)	20.1.0	29.190	-0.072	0.00.0		(315)	57 693	57.695		1.5966	13
(113)	21 227	31.325	0.012	2.8522	207	(016) [(Ž16)	37.030	57.948	0.042	1.5500	
							E7 000			4 5004	70
(113)		31.445	0.000	2.8426	85	[(420)	57.990		-0.011	1.5891	72
(020)		31.970	-0.008	2.7979	1180	(404)	58.174		-0.012	1.5845	17
(004)	32.576		2.7458	321		_ (225)	58.349	58.350	-0.001	1.5802	17
(212)		32.603	-0.019			(404)		58.577	0.013		
$(\bar{1}04)$	34.575	34.563	0.012	2.5921	133	(225)	58.590	58.594	-0.004	1.5743	35
(104)	34.727	34.709	0.018	2.5812	54	(421)			-0.024		
(014)		36.413	0.002	2.4653	224	(034)	59.903		-0.003	1.5429	7
(213)	37.541	37.543	-0.002	2.3939	260	(026)	60.376		-0.003	1.5319	21
`_ ,			0.015	2.3732	166	(422)		60.526	0.006	1.5283	22
(122)	37.000	37.865		2.3732	100	I '- '	00.552			1.0200	22
(122)		37.933	-0.053			(233)			-0.013		
(310)	38.473	38.466	0.007	2.3380	249	(233)	60.684		-0.005	1.5249	23
(302)		38.496	-0.023			(414)		60.709	-0.025		
(302)	38.688	38.696	-0.009	2.3255	34	(422)		60.717	-0.037		
(220)	39.765	39.760	0.005	2.2650	76	[(134)		61.236	0.060		
(204)	40.132	40.135	-0.003	2.2451	420	(017)	61.296	61.296	0.000	1.5111	84
(204)		40.393	0.003	2.2310	275	(330)		61.333	-0.043		
(023)		40.550	-0.007	2.2233	212	(126)	61 592	61.605		1.5045	7
(<u>221</u>)	40.040	40.601	-0.058	L.LLOO		(117)	01.002	62.506	0.018	1.0010	•
	40.006			0.1000	105	_ ,	60 504		-0.003	1.4843	6
(123)		42.228	0.008	2.1380	195	(502)					
(222)		43.225	-0.008	2.0917	979	(423)	63.650		-0.016	1.4608	8
(214)		43.639	-0.015	2.0731	44	(035)		65.611	0.022		
(015)	44.252	44.253	-0.001	2.0452	205	[(226)	65.633	65.634	-0.001	1.4213	14
(115)	45.802	45.791	0.011	1.9795	204	(217)	66.234	66.220	0.014	1.4099	58
(313)	45.909	45.884	0.025	1.9751	218	(217)	66.537	66.538	-0.001	1.4042	30
(115)		45.936	-0.027			[(Ť35)		66.801	0.035		
(024)	46.276	46.290	-0.014	1.9603	696	(040)	66.836	66.839	-0.003	1.3986	25
(400)		47.033	-0.017	1.9312	1244	(323)	00.000	66.873	0.037	,,,,,,,	_
`_ ,	47.010			1.3012	1277		67 467		0.017	1.3871	14
(223)	47 704	47.053	-0.037	4 0047	00	(041) (Ē12)		67.450			
(124)		47.791	0.000	1.9017	83	(513)		67.742	0.015	1.3819	6
(304)	48.242		-0.018	1.8849	66	(424)		67.945	0.008	1.3783	23
(304)	48.598		0.004	1.8719	74	(008)	68.265	68.241	0.024	1.3728	13
(006)	49.753	49.757	-0.004	1.8311	244	(424)		68.304	-0.039		
$(\bar{4}02)$	49.912	49.931	-0.019	1.8257	172	[(141)		68.668	0.024		
(410)	_	49.934	-0.022			(141)	68.692	68.691	0.001	1.3653	4
(130)	50 289	50.295	-0.006	1.8129	177	(406)	71.157		0.016	1.3240	14
(215)	00.200	50.322	-0.033			(043)		72.252	0.046		•
	EO EOO			1 0005	999				0.040		
(215)	5U.598	50.591	0.007	1.8025	232	(036)	70.000	72.256		1 2050	
(411)		50.613	-0.015			(241)	72.298		0.011	1.3058	53
(322)	50.873	50.878	-0.005	1.7934	103	(514)		72.326	-0.028		
(314)		51.110	0.031			(241)		72.331	-0.033		
(106)	51.141	51.155	-0.014	1.7846	80	[(416)		72.899	0.029		
		51.315	-0.005	1.7792	64	(203)	72 928	72.902	0.026	1.2961	18
(106)	31.310	31.013	0.000	1.7732	04	1 (200)	,				

Table 3. Fractional atomic coordinates in SrNb₂O₆ with e.s.d.s, as calculated from the least-squares refinement, in parentheses.

Atom	x/a	y/b	z/c
Sr	0.2523(7)	0.5360(10)	0.0393(3)
Nb(1)	0.0143(6)	0.0294(17)	0.1448(4)
Nb(2)	0.5232(6)	0.4698(16)	0.6428(4)
O(1)	0.044(4)	0.228(6)	0.975(3)
O(2)	0.456(4)	0.262(7)	0.467(3)
O(3)	0.070(4)	0.376(5)	0.206(3)
O(4)	0.454(4)	0.129(5)	0.701(3)
O(5)	0.258(4)	0.963(5)	0.149(2)
O(6)	0.758(5)	0.149(4)	0.116(2)

and illustrates clearly the similarity between the SrNb₂O₆ and the CaTa₂O₆ structures.

Appendino and Burlando,⁴ however, reported powder diffraction data for the low-temperature phase of SrNb₂O₆ and indexed the pattern by an orthorhombic cell. This can be understood from the fact that the monoclinic angle deviates from 90° by only a few tenths of a degree and that the diffraction data were obtained by the Debye-Scherrer method. As there are strong reasons to believe that Guinier-Hägg photographs measured by an automatic film scanner instrument should give more accurate data, we decided to refine the unit cell dimensions and make a profile refinement of the structure using this type of

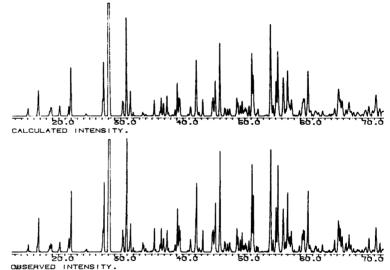
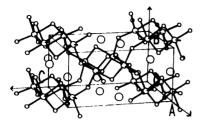


Fig. 1. Observed and calculated X-ray powder diffraction intensities for monoclinic $SrNb_2O_6$ as a function of 20. Only the lowest third of the tallest peak at $2\theta = 29^\circ$ is shown on the figure.


bronze structure is obtained if the sample is heated 96 h at 1450 °C. At lower temperatures, a monoclinic pseudoorthorhombic modification, isostructural with orthorhombic CaTa₂O₆, is formed. 9 In the paper by Brusset et al., 8 approximate cell dimensions and an electron projection map of the monoclinic structure, but no atomic coordinates, are given. The electron density projection is calculated from single-crystal film data

data. In cases of very slight monoclinic splitting of reflections, there are also usually some advantages in Guinier over Debye-Scherrer or powder diffractometer methods because of the smaller half-widths of the diffraction lines*.

Experimental

SrNb₂O₆. The sample of SrNb₂O₆ used in this investigation was prepared from Nb₂O₅ (Optipur) heated 48 h at 1000 °C and SrCO₃ (Mallinckrodt, 99.7%). After preliminary decomposition, 20 h at 800 °C, a pressed disk of stoichiometric amounts of SrO and Nb₂O₅ was heated 48 h at 1200 °C on a platinium foil.

^{*}After submitting the manuscript of this article, the authors became aware of a structure determination of SrNb₂O₆ based on single-crystal data¹⁴. Our results agree fairly well with those reported in that paper.

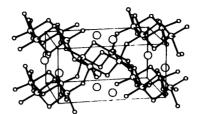


Fig. 2. Stereo view of monoclinic SrNb₂O₆. Large circles = Sr, medium circles = Nb and small circles = O.

 $SrNb_6O_{16}$. Pressed disks of SrO as described above, and Nb₂O₅ in the molar ratio 2:5 were heated for 4 d at 1200 °C on platinum foils. An X-ray powder diffraction pattern from the product showed only the existence of the phase $2SrO \cdot 5Nb_2O_5$. All attempts to prepare $3SrO \cdot 8Nb_2O_5$ (or $SrO \cdot 3Nb_2O_5$) directly from SrO and Nb₂O₅ by heating in the ranges 850 °C to 1000 °C for 4 to 10 d failed, however.

According to Appendino and Burlando,4 the phase 3SrO · 8Nb₂O₅ can be obtained by decomposing 2SrO · 5Nb₂O₅ at temperatures below 1100 °C. Although we tried to heat 2SrO · 5Nb₂O₅ at various temperatures between 800°C and 1050 °C for up to 4 d, we were not able to decompose 2SrO · 5Nb₂O₅ without addition of some amount of Nb₂O₅. After 4 d of heating at 1000 °C of 2SrO · 5Nb₂O₅ and Nb₂O₅ in the molar ratio 3:1, a Guinier powder photograph showed lines from the monoclinic modification of SrO · Nb₂O₅⁴ and from the phase which was assigned the formula 3SrO · 8Nb₂O₅ by Appendino and Montorsi.5 As shown in the present work, however, the latter phase is isostructural with NaNb₆O₁₅F⁷ and has the composition SrO · 3Nb₂O₅. Although the vast majority of the diffraction lines represent the phases $SrO \cdot 3Nb_2O_5$ and $SrO \cdot Nb_2O_5$, a small contribution from Nb2O5 can be found in the pattern. The mixed Guinier pattern is shown in Table 5.

Powder diffraction photographs. X-ray powder diffraction photographs were taken in a subtraction-geometry Guinier-Hägg focusing camera of 80 mm diameter, with strictly monochromatized $CuK\alpha_1$ radiation ($\lambda=1.540598$ Å). The atmosphere in the camera housing during the exposures was dry air at room temperature. Single coated film (CEA Reflex 15) was used so that a back-layer profile would be avoided and the background diminished, thus improving the signal-to-noise ratio. Finely powdered silicon

 $(a = 5.430880 \pm 35 \text{ Å at } 25 ^{\circ}\text{C})^{11}$ was added as internal θ standard in the samples used for leastsquares refinement of unit cell dimensions. Stepscan intensities used for Rietveld profile refinements were evaluated from photographs taken without silicon but using lines from the samples as θ standards. The films were measured by an automatic single-beam microdensitometer.12 The slit opening of the collimator was 0.040×2.0 mm; the step length 0.020 mm, corresponding to 0.0143° in 20. Trial runs with a collimator slit opening of 0.020×2.0 mm were found to give unacceptably high noise levels. (The lower limit of the slit opening in the step-scan direction should depend on the grain size of the film emulsion.) The 20 range used for profile analysis of SrNb₂O₆ was $15^{\circ} \le 2\theta \le 73.4^{\circ}$, and that for $SrNb_6O_{16}$, $10^{\circ} \le 2\theta \le 74.6^{\circ}$.

Table 4. Interatomic distances (Å) in SrNb₂O₆, with e.s.d. in parentheses.

Sr-O(1)	2.46(4)
O(1)'	2.65(4)
O(2)	2.43(4)
O(2)'	2.59(4)
O(3)	2.49(3)
O(4)	2.53(3)
O(5)	2.68(3)
O(6)	2.46(2)
Nb(1)-O(1)	2.00(4)
O(1)'	2.19(3)
O(3)	1.96(3)
O(3)'	2.10(3)
O(5)	1.92(3)
O(6)	2.11(4)
Nb(2)-O(2)	1.94(4)
O(2)'	2.31(3)
O(4)	1.94(3)
O(4)'	2.08(3)
O(5)	2.08(3)
O(6)	1.96(3)
	1.30(0)

Table 5. X-ray powder diffraction pattern of $SrNb_eO_{16}$ (A) and $SrNb_2O_6$ (B) in the molar ratio 5:1. Small intensity contributions from Nb_2O_5 (C) are also present in the mixed pattern. Some reflections can be indexed by more than one phase and asterisks are therefore used to denote reflections which may have negligible intensities according to Rietveld refinements.

2θ-obs	Α	2θ-calc B	С	<i>d</i> -obs	<i>I</i> -obs	Α	(hkl) B	С
			1.7.7.					
10.511	10.534			8.410	112	(011)		
11.947	11.954			7.402	60	(002)		
16.104		16.122		5.500	48		(002)	_
17.250			17.367	5.137	48			(4 01)
17.760		17.777		4.990	160		(011)	
19.992	19.987			4.438	188	(013)		
21.156	21.158			4.196	65	(022)		
22.467	22.455			3.9542	2446	(100)		
23.039		23.016		3.8573	158	` ,	(200)	
23.757			23.758	3.7422	301		, ,	(110)
24.043	24.042			3.6984	689	(004)		()
24.442	20.2		24.463	3.6389	133	(00.7		(105)
24.868	24.861		24.400	3.5776	664	(111)		(100)
25.538	25.512		25.578	3.4852	352			(505)
25.556	20.012			3.4032	332	(102)		
00.574			25.587	0.0500	50			(012)
26.571			26.549	3.3520	56	(004)		(005)
26.912	26.913			3.3102	2821	(031)		
-	26.993					(112)		
28.343		28.317		3.1462	224		(202)	
28.548	28.543			3.1242	160	(120)		
29.149	29.187	29.122		3.0612	2781	(121)*	(013)	
29.826	29.828			2.9932	1809	(024)		
-	30.180					(005)		
30.249	30.236			2.9522	730	(113)		
31.050	31.044			2.8779	198	(122)		
31.465	31.458			2.8409	1283	(015)		
31.968	31.970	31.970		2.7973	1294	(033)	(020)	
32.242	31.970	31.970	32.313		45	(000)	(020)	(511)
		20 576	32.313	2.7742			(004)	(311)
32.572	00.400	32.576		2.7469	70	(404)	(004)	
33.136	33.130			2.7014	893	(104)		
33.953	33.936			2.6382	58	(123)		
35.329	35.326			2.5385	1582	(131)		
36.033			35.970	2.4906	29			(602)
			36.107					(707)
36.415	36.408	36.413		2.4653	165	(006)	(014)	
36.908	36.907			2.4335	74	(132)		
37.318	37.306			2.4077	106	(042)		
37.657	37.655			2.3868	1056	(124)		
37.940	37.942			2.3696	62	(105)		
		38.466				(/	(310)	
38.488		38.496		2.3371	49		(302)	
38.895		00.400	38.871	2.3136	74		(002)	(903)
30.033			38.925	2.0100	/-			(413)
38.993	38.995			2.3080	57	(115)		
39.416	39.421			2.2842	101	(133)		
40.162		40.135		2.2435	139		(204)	
40.402	40.397	40.393		2.2307	338	(035)	(204)	
		40.550				,	(023)	
40.603	40.616	40.601		2.2201	203	(026)	(221)*	
. 5.000	10.010	40.665				(020)	(221)	(co

2θ-obs	Α	2θ-calç B	С	d-obs	I-obs	Α	<i>(hkl)</i> B	С
42.238		42.228		2.1380	27		(123)	
43.107	43.084	43.225		2.0968	763	(044)	(222)	
43.701	43.706			2.0697	377	(017)	` ,	
43.979	43.979			2.0572	72	(142)		
44.267		44.253		2.0445	112	. ,	(015)	
44.866	44.863			2.0186	87	(051)	` ,	
45.844	45.835			1.9778	1626	(200)		
46.248	46.266	46.290		1.9614	233	(201)*	(024)	
46.701	46.705			1.9434	170	(135)	` ,	
	46.741					(210)		
46.929	46.900			1.9345	267	(126)		
47.028	47.035	47.033		1.9307	309	(045)*	(400)	
		47.053				(0.0)	(223)	
			47.462				(==0)	(118)
47.509			47.527	1.9123	151			(40°)
17.500			47.529	1.5120	131			(020)
48.285	48.285		47.020	1.8833	291	(053)		(020)
48.414	44.424			1.8786	159	(212)		
19.123	49.116			1.8532	543	(144)		
19.639	49.614			1.8351	136	(203)		
	49.678					(117)		
19.783	49.791	49.757		1.8301	215	(221)*	(006)	
50.734	50.730			1.7980	363	(151)		
50.829	50.843			1.7949	211	(037)		
51.237	51.236			1.7815	76	(136)		
51.523	51.544			1.7723	67	(046)		
51.948	51.923			1.7588	54	(152)		
52.199	52.209	52.204		1.7510	302	(127)*	(224)	
52.425	52.412	52.414		1.7439	331	(204)	(224)	
52.598	52.607			1.7386	590	(028)		
52.972	52.972			1.7272	102	(223)		
	53.871					(153)		
3.927	53.951			1.6989	2284	(060)		
	53.955					(231)		
4.652	54.643			1.6780	1538	(055)		
55.179		55.232		1.6632	430	,	(033)	
55.652	55.649			1.6502	504	(224)	\ /	
6.236	56.246			1.6345	547	(137)		
6.410		56.428		1.6298	237	(- 3 -)	(413)	
	56.625	· · 				(038)	, ,	
6.662	56.650			1.6232	340	(215)		
	56.674					(019)		
	56.900					(146)		
6.944	56.972			1.6158	270	(233)		
57.293	00.J, L	57.280		1.6068	99	(200)	(232)	
		57.324		1.5000	55		(315)	
57.894	57.894	37.324		1.5915	574	(128)	(010)	
59.140	59.159			1.5609	391	(160)		
59.813	59.811			1.5450	478 170	(155)		
60.534	60.519	64 000		1.5283	178	(242)	(017)	
61.274	64 000	61.296		1.5116	140	(400)	(017)	
61.737	61.686			4 504 4	047	(138)		
11/4/	61.733			1.5014	217	(119)		(con

2θ-obs		20-calc		<i>d</i> -obs	I-obs	(hkl)		
	Α	В	С			Α	В́	С
62.309	62.288			1.4889	49	(243)		
	62.722					(235)		
62.737	62.745			1.4798	540	(039)		
	62.754					(001)		
63.347	63.349			1.4670	180	(057)		
64.212	64.250			1.4493	48	(071)		
64.460	64.465			1.4443	58	(207)		
64.745	64.718			1.4387	326	(244)		
	64.792					(164)		
65.192	65.189			1.4299	140	(217)		
65.673	65.664			1.4206	142	(02^1_0)		
66.501	66.506			1.4049	461	(236)		
66.798	66.779			1.3994	221	(148)		
	66.841					(060)		
67.078	67.092			1.3942	239	(252)		
67.525	67.534			1.3860	323	(139)		
	67.543					(10^1_0)		
68.750	68.768			1.3643	120	(253)		
69.518	69.529			1.3511	140	(208)		
70.853	70.842			1.3289	67	(237)		
71.483	71.480			1.3187	146	(300)		
	71.490					(166)		
72.288	72.283	72.287		1.3060	461	(075)	(241)	
	72.302	72.326				(228)	(514)	
		72.331					(241)	
73.434	73.429			1.2884	543	(260)		
	73.470					(312)		
	74.014					(255)		
74.025	74.035			1.2796	698	(059)		
	74.043					(04_0^1)		
74.540	74.544			1.2720	150	(321)		

Results

 $SrNb_2O_6$. Unit cell parameters, cell content and figures of merit for the indexing are given in Table 1. The indexed pattern is shown in Table 2. Reflections with indices (h0l) were observed only for l=2n and (0k0) only for k=2n, which is characteristic of space group $P2_1/c$. Trial parameters for atomic coordinates were derived from the orthorhombic modification of $CaTa_2O_6$ reported by Jahnberg. Full-profile Rietveld refinement was made by the program written by Werner $et\ al.$ The refinement was terminated when all shifts in the parameters were less than 10 % of their corresponding standard deviations. The final reliability factor R_F , defined below, was 0.10.

$$R_{\rm F} = \sum_{\rm hkl} |\sqrt{\rm I_{\rm obs}} - \sqrt{\rm I_{\rm calc}}| / \sum_{\rm hkl} |\sqrt{\rm I_{\rm obs}}|$$

The positional parameters obtained are given in Table 3. Because of the strong correlation between temperature and absorption effects, no thermal parameters of physical significance could be derived. Half-width, asymmetry and zeropoint parameters were refined together with the atomic coordinates. The observed and calculated intensity curves are shown in Fig. 1. In order to facilitate a comparison between the curves, the scale is increased so that only 1/3 of the strongest diffraction peak at $2\theta = 29^{\circ}$ is shown in the figure.

The structure is built up from two crystallographically independent NbO₆ octahedra, sharing

OBSERVED INTENSITY.

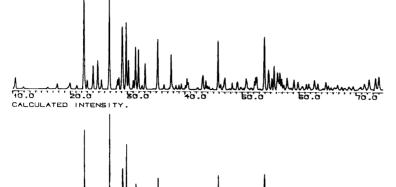
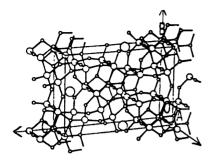


Fig. 3. Observed and calculated X-ray powder diffraction intensities for a mixed pattern of $SrNb_6O_{16}$ and $SrNb_2O_6$ in the molar ratio 5:1. Small contributions from Nb_2O_5 are marked out by arrows at $2\theta = 23.7^\circ$ and 47.5° .


edges and corners (Fig. 2 and Table 4). Two different pairs of octahedra with Nb-Nb distances 3.174(9) Å and 3.205(9) Å are formed by sharing edges. In the isostructural CaTa₂O₆, all TaO₆ octahedra are identical. Nb(1), O(1) and O(3) form layers in the bc plane, i.e. with x coordinates around zero; whereas, Nb(2), O(2) and O(4) form similar layers at x around 0.5. The layers are connected via the corner oxygens O(5) and O(6). The main difference between the present structure and the orthorhombic CaTa₂O₆, however, is that the two layes are not related by exact mirror planes at x = 1/4 and 3/4. The strontium atoms are situated in tunnels running in the direction of the a axis. The strontium atoms are surrounded by eight oxygens at distances from 2.43 to 2.68 Å. The average Sr-O distance is 2.54 Å, whereas the corresponding Ca-O distance in CaTa₂O₆ is 2.50 Å. Considering the ionic radii for Ca²⁺ and Sr²⁺, 0.99 Å and 1.12 Å respectively, it seems likely that the monoclinic deviation of the SrNb₂O₆ structure is caused by the limited space for the strontium ions in the tunnels.

 $SrNb_6O_{16}$. After omission of all lines that can be attributed to the monoclinic phases $SrNb_2O_6$ and Nb_2O_5 (B and C in Table 5), the remaining lines may be used to derive the orthorhombic cell dimensions reported in Table 1. Although the powder pattern is similar to that of $NaNb_6O_{15}F_7$, the occurrence of some weak reflections with k+l=2n+1 excludes the space group Amm2.

Therefore, Rietveld refinements of the heavy atom positions were made in space group *Pmm2* by means of the two-phase program written by Werner *et al.*¹³ The atomic coordinates for strontium and niobium were derived from the sodium and niobium positions reported by Andersson for NaNb₆O₁₅F.⁷ The coordinates for the monoclinic SrNb₂O₆ were held fixed at the values given in Table 3, and only the relative amount of this

Table 6. Fractional atomic coordinates in space group Amm2 for $SrNb_6O_{16}$ used to calculate the intensity curve for the mixed powder diffraction pattern shown in Fig. 3.

Atom	Point position	x/a	y/b	z/c
Sr(1)	2(b)	1/2	0	0.4040
Nb(1)	2(a)	0	0	0
Nb(2)	2(a)	0	0	0.2142
Nb(3)	4(<i>d</i>)	0	0.3186	0.0620
Nb(4)	4(d)	0	0.3153	0.3154
O(1)	2(b)	1/2	0	0
O(2)	2(b)	1/2	0	0.226
O(3)	4(<i>e</i>)	1/2	0.324	0.050
O(4)	4(<i>e</i>)	1/2	0.323	0.307
O(5)	4(<i>d</i>)	0	0.119	0.105
O(6)	4(<i>d</i>)	0	0.133	0.311
O(7)	4(<i>d</i>)	0	0.305	0.447
O(8)	4(<i>d</i>)	0	0.351	0.178
O(9)	2(a)	0	1/2	0.356
O(10)	2(a)	0	0	0.519



Fig. 4. Stereo view of SrNb₆O₁₆. Large circles = Sr, medium circles = Nb and small circles = O

phase was refined. The small intensity contributions from Nb₂O₅ were neglected since they could not appreciably affect the result. Because of the symmetry reduction from Amm2 to Pmm2, the number of atomic positions increases from 15 to 30. By formal limitations in the computer program, however, it is not possible to refine more than 25 atomic positions in each phase. Although it may be possible to increase the program limits, it is judged as clearly unrealistic to include more than 25 atoms in a powder refinement, unless very strong constraints exist. Furthermore, although most of the oxygen atoms could be included in the intensity calculations, it was not possible to make any convergent refinement unless the oxygen positions were held fixed. R_F values in the range 0.17-0.20 were obtained from various refinements. No significant shifts in the input coordinates for strontium and niobium were found, however.

At this stage, it was decided to use space group Amm2 and calculate the intensity curve and the $R_{\rm F}$ value from a Rietveld refinement with all atomic positions held fixed at the values reported by Andersson for NaNb₆O₁₅F.⁷ The coordinates are listed in Table 6. In this refinement, only the relative amounts of the phases and nonstructural parameters such as half-width and asymmetry were refined. Considering the similarity between the observed and calculated intensity curves for the mixed pattern (Fig. 3), and the R_F value =0.16 obtained, it can be concluded that the main contribution to the pattern is yielded by a phase that is isostructural with NaNb₆O₁₅F and that the deviations from space group Amm2 are small. The composition of the phase should therefore be SrNb₆O₁₆ (i.e. SrO·3Nb₂O₅). It is also concluded that the reaction at 1000°C between 2SrO · 5Nb₂O₅ and Nb₂O₅ in the molar ratio 3:1 can be written: $3Sr_2Nb_{10}O_{27}+Nb_2O_5 \rightarrow$ 5SrNb₆O₁₆+SrNb₂O₆.

The stoichiometry was confirmed by the refinement. In Fig. 4, a stereo view of the ideal structure in space group *Amm2* is given. As it was not found possible to use the correct space group, *Pmm2*, in the refinement of the structure, we can only speculate about the difference between the NaNb₆O₁₅F and the SrNb₆O₁₆ structures. It seems likely, however, that the small deviations should be attributed to the increase in ionic radius from 0.95 Å for Na⁺ to 1.12 Å for Sr²⁺.

Acknowledgement. The skillful technical assistance of Mr. L. Göthe is gratefully acknowledged.

References

- 1. Goldschmidt, H. J. Metallurgia 62 (1960) 211.
- 2. Francombe, M. H. Acta Crystallogr. 13 (1960) 131.
- 3. Whiston, C. D. and Smith, A. J. Acta Crystallogr. 23 (1967) 82.
- 4. Appendino, P. and Burlando, G. A. Atti Accad. Sci. Torino 107 (1973) 97.
- Appendino, P. and Montorsi, M. Chimica Industria 57 (1975) 233.
- Werner, P.-E., Eriksson, L. and Westdahl, M. J. Appl. Crystallogr. 18 (1985) 367.
- 7. Andersson, S. Acta Chem. Scand. 19 (1965) 2285.
- Brusset, H., Gillier-Pandraud, H. and Voliotis, S. D. Mat. Res. Bull. 6 (1971) 5.
- 9. Jahnberg, L. Acta Chem. Scand. 71 (1963) 2548.
- Deslattes, R. D. and Henins, A. Phys. Rev. Lett. 31 (1973) 972.
- 11. Hubbard, C. R., Swanson, H. E. and Mauer, F. A. J. Appl. Crystallogr. 8 (1975) 45.
- Johansson, K. E., Palm, T. and Werner, P.-E. J. Phys. E13 (1980) 1289.
- Werner, P. E., Salomé, S., Malmros, G. and Thomas, J. J. Appl. Crystallogr. 12 (1979) 107.
- Trunov, V. K., Averina, I. M. and Velikodnij, J. A. Kristallografiya 26 (1980) 390.

Received June 19, 1986.